The Impact of the Time Token Learning Model on the Speaking Skills of Fourth-Grade Students in Madrasah Ibtidaiyah

Abdal Rizky Munthe¹, *Riris Nurkholidah Rambe²

^{1,2} Universitas Islam Negeri Sumatera Utara, Faculty of Tarbiyah and Teaching, Dept. of Madrasah Ibtidaiyah e-mail: abdalrizky27@uinsu.ac.id, ririsnurkholida@uinsu.ac.id

> Submitted: 02-07-2025 Revised: 22-09-2025 Accepted: 15-10-2025

ABSTRACT. This study aims to determine the impact of the Time Token learning model on the speaking skills of fourth-grade students at MIN 12 Medan. Speaking skills are one of the essential competencies in Indonesian language learning, requiring structured practice and appropriate teaching methods. This research employed a quantitative approach with a quasi-experimental design of the nonequivalent control group type. The sample consisted of 62 students, divided into two groups: the experimental group using the Time Token model and the control group using conventional learning methods. The research instrument was a speaking skills test assessed based on six aspects: accuracy of pronunciation, intonation, articulation, diction, word structure order, and fluency. Data analysis included normality testing, homogeneity testing, and hypothesis testing using an independent sample t-test. The results showed that the data were normally distributed and homogeneous, and the hypothesis test yielded a significance value of $0.001 \le 0.05$, indicating a significant difference between the two groups. The average posttest score of the experimental group was 27.06, higher than that of the control group, which was 22.06. These findings demonstrate that the Time Token model is efficacious in improving students' speaking skills. Therefore, Time Token can be applied as an innovative and interactive learning strategy to develop students' oral communication abilities.

Keywords: Time Token, speaking skills, Indonesian language learning, elementary students.

https://doi.org/10.54069/attadrib.v8i2.1006

How to Cite

Munthe, A. R., & Rambe, R. N. (2025). The Impact of the Time Token Learning Model on the Speaking Skills of Fourth-Grade Students in Madrasah Ibtidaiyah. Attadrib: Jurnal Pendidikan Guru Madrasah Ibtidaiyah, 8(2), 543-552.

INTRODUCTION

In the field of education, language plays a fundamental role in shaping students' overall success and development. Language not only functions as a medium of communication but also fosters intellectual, social, and emotional growth (Iswara et al., 2024). Among the four language skills, namely listening, speaking, reading, and writing, speaking has a particularly crucial role as it enhances reasoning, confidence, and the ability of students to express ideas coherently (Suriani et al., 2021; Li et al., 2021; Yusnaldi et al., 2023; Jończyk et al., 2024). In the context of Indonesian language education, speaking proficiency is essential for students to engage effectively, comprehend cultural values, and interact meaningfully with their environment (Hasibuan et al., 2024). The Qur'an instructs believers to speak politely, honestly, and responsibly. Students' success in learning is closely tied to their ability to communicate effectively (Devianty, 2025)... Teachers play a pivotal role in cultivating this skill by creating a learning environment that encourages confidence, clarity, and communicative competence (Simbolon, 2023). Given these educational demands, the development of speaking skills among elementary school students has

become a vital area of study, particularly within the framework of innovative teaching models such as the Time Token approach.

Existing studies have explored the importance of speaking skills and various instructional models designed to enhance them. Researchers such as (Yusron et al., 2020), (Devina, 2022), and (Rambe, 2023) have emphasized the necessity of continuous and systematic practice in developing oral communication competence. Furthermore, studies by (Maharani et al., 2023) and (Anistiara, 2021) have demonstrated that the Time Token learning model effectively increases students' participation and motivation in classroom interactions. However, despite these findings, much of the existing literature remains limited to general observations or experimental data without in-depth exploration of how the Time Token model can be contextually integrated into Indonesian language instruction at the elementary level. Moreover, few studies have examined how teachers' implementation of this model directly influences students' confidence and active participation during formal speaking activities. Therefore, more context-specific and practical investigations are needed to bridge this gap, particularly in schools that continue to rely heavily on conventional teaching methods.

An interview with a fourth-grade teacher at MIN 12 Medan, North Sumatra, revealed that many students still struggle with speaking skills. They often hesitate, lack confidence, and have limited fluency, making their ideas difficult to understand. Teachers also tend to rely on conventional teaching methods rather than engaging in learning models, resulting in students being less active and rarely expressing their opinions. Consequently, many students remain passive during lessons, indicating that their speaking abilities and self-confidence have not yet developed optimally. However, the Time Token learning model can significantly enhance students' speaking abilities by providing equal opportunities for all learners to communicate within a supportive classroom structure (Paksi, 2022). The model ensures that each student participates in oral activities through organized speaking turns, thereby improving confidence, fluency, and comprehension. It is hypothesized that the implementation of the Time Token model will increase students' motivation, enhance speaking performance, and foster more dynamic classroom interactions (Haidir, 2020; Gaol et al., 2022). Furthermore, this study examines the assumption that when teachers use creative and student-centered models, instead of conventional lecture-based methods, students will demonstrate greater engagement, clearer speaking abilities, and stronger critical thinking skills (Susanti et al., 2024, Wabradon & Reba, 2020).

The purpose of this paper is to address the shortcomings of previous research by providing a focused examination of how the Time Token learning model can enhance students' speaking skills in Indonesian language instruction at the elementary level. The findings of this study are expected to reinforce the notion that speaking skills should be developed through innovative and participatory learning models. Specifically, the Time Token method represents a promising approach that aligns with the goals of the Indonesian curriculum to cultivate communicative, confident, and respectful learners (Rizka et al., 2021). This paper further emphasizes the interrelationship between speaking and listening competencies, as effective speaking requires both comprehension and responsive interaction (Amelhay & Sakale, 2024; Budiasningrum & Rosita, 2022; Saputri & Firmansyah, 2023). By implementing this model, teachers can create an active, enjoyable, and collaborative learning environment that empowers students to express their ideas clearly and confidently (Rosliani, 2023; Muhijja, 2024).

In line with these findings, this study aims to examine the effectiveness of the Time Token learning model in improving students' motivation, participation, and speaking skills. It highlights the significance of employing structured cooperative learning strategies that foster student engagement, equitable participation, and confidence in speaking. Specifically, the paper seeks to explain how the Time Token method can transform a passive learning environment into an active and communicative classroom. Thus, this work contributes not only to the practical

improvement of teaching practices but also to the theoretical enrichment of language pedagogy, particularly within the contexts of elementary and Islamic education.

METHOD

Research Design and Instrument. This study employed a quantitative approach using a quasi-experimental nonequivalent control group design (Abraham & Supriyati, 2021; Sugiyono, 2018). The participants were 62 fourth-grade students, divided into experimental and control groups, with each group consisting of 31 students. The test material consisted of two components. The first was an announcement text containing important information directed to a broad audience, such as an announcement about a gotong royong activity. Students were expected to listen carefully, comprehend the content, and then deliver it orally. The second component involved narrating personal experiences, specifically activities undertaken outside of school, which students presented in front of the class. Before the treatment, both groups were administered a pretest to assess their initial speaking skills. The experimental group received instruction using the Time Token learning model, while the control group continued with conventional teaching methods. After the treatment, a posttest was conducted to compare the learning outcomes of the two groups. Overall, the study was implemented in three stages: pretest, treatment, and posttest.

Table 1 Research Design

No.	Groups	Pretest	Treatment	Posttest
1.	Experimental group	O1	X1	O2
2.	Control group	O3	X2	O4

Description:

O1 and O3 = Pretest; O2 and O4 = Posttest

X1 = learning using the Time Token model; X2 = learning by the conventional method

The instruments employed in this study were speaking skill tests that assessed six aspects: pronunciation accuracy, intonation appropriateness, articulatory clarity, diction suitability, sentence structure regularity, and overall fluency. The instrument underwent an expert validation process and was declared reliable, making it appropriate for use as a measurement tool. Each aspect was scored on a scale of 1 to 5, with higher scores reflecting stronger performance in the respective category.

Table 2 Aspects of Assessment and Category

No.	Speech Aspects	Indicators	Average Score	Category
1.	Pronunciation accuracy	Vowels and consonants are articulated clearly and precisely	4.5 - 5.0	Very good
2.	Intonation accuracy	The tone of voice appropriately reflects the meaning of the utterance.	3.5 – 4.4	Good
3.	Articulation precision	Speech organs are used accurately to produce intelligible sounds.	2.5 - 3.4	Fair
4.	Diction appropriateness	Vocabulary use is suitable for the context and meaning.	1.5 - 2.4	Poor
5.	Grammatical structure	Words are arranged in a grammatically correct and logical sequence.	1.0 - 1.4	Very poor
6.	Speaking fluency	Speech flows smoothly with minimal pauses, repetitions, or hesitations.		

The scoring criteria are as follows: A score of 5 (Very Good) indicates that pronunciation is clear and accurate with no noticeable errors, intonation is precise and matches meaning, and speech is fluent, well-structured, and easy to understand. A score of 4 (Good) reflects minor errors in pronunciation or intonation that do not hinder understanding, with generally fluent speech and only slight pauses or hesitations. A score of 3 (Fair) shows some errors in pronunciation,

grammar, or vocabulary that occasionally affect clarity, with fluency somewhat disrupted by pauses or repetitions. A score of 2 (Poor) suggests frequent errors in pronunciation, intonation, or grammar that make speech difficult to follow, with fluency limited by many hesitations or breakdowns. Lastly, a score of 1 (Very Poor) means that speech is largely unintelligible due to consistent errors and shows severe impairment in pronunciation, grammar, and fluency.

Calculating scores for the main aspects of speaking skills involves two steps. First, the total score calculation is done by summing the scores from all assessed aspects to obtain the total score. For example, Pronunciation (4) + Intonation (4) + Articulation (3) + Diction (4) + Sentence Structure (3) + Fluency (3) = 21. Second, the average score calculation is determined by dividing the total score by the number of aspects assessed. The formula is: Total Score \div Number of Aspects = Average Score. For instance, $21 \div 6 = 3.5$. The outcome of the assessment is an average score that reflects the overall quality of speaking performance. These results serve as the basis for evaluation and for making comparisons between the experimental and control groups in the context of language proficiency, presentations, or other oral performance assessments. To ensure the validity of the findings, statistical analyses were conducted using SPSS version 31, including tests of validity and examinations of the model's effects on both groups. The comparative learning outcomes are subsequently presented in graphical form.

RESULT AND DISCUSSION

Result

In accordance with the quasi-experimental design, a pretest and posttest were used to evaluate students' initial speaking skills and their development after treatment. The experimental class received instruction using the time token model, designed to improve speaking skills through active and structured engagement, while the control class underwent conventional learning as a comparison. After treatment, a posttest was administered to both groups to measure improvement in speaking skills. A summary of the average scores across the six main assessment aspects is shown below:

No.	Speech Aspects	Experime	ent Group	Control Group		
		Pretest	Posttest	Pretest	Posttest	
1.	Pronunciation accuracy	4.29	4.87	3.71	4.39	
2.	Intonation accuracy	4.03	4.77	3.19	3.97	
3.	Articulation precision	3.81	4.61	3.16	3.90	
4.	Diction appropriateness	3.48	4.45	2.77	3.39	
5.	Grammatical structure	3.10	4.10	2.42	3.06	
6.	Speaking fluency	3.29	4.26	2.58	3.35	
	Average	3.66	4.51	2.97	3.67	

Table 3 Average Score of Speaking Skills Main Aspects

Based on Table 3, the average scores for the main aspects indicate that the experimental class obtained a higher posttest mean score compared to the pretest, with an average increase of 0.85 points. The control class also demonstrated an improvement in the overall mean score; however, the increase was less substantial than that observed in the experimental class.

Descriptive analysis was employed to present student learning outcomes in both the experimental and control classes, prior to and following the treatment. The descriptive statistics include measures such as the mean, standard deviation, minimum, maximum, and other indicators of variability. The detailed results are presented in the following table.

Table 4 Pretest and Posttest Analysis

		Exp_pretest		Exp_pos	Exp_posttest		Con_pretest		Con_posttest	
		Statistic	Std.	Statistic	Std.	Statistic	Std.	Statistic	Std.	
			Error		Error		Error		Error	
Mean		21.97	.628	27.06	.842	17.84	.833	22.06	.683	
95% Confidence	Lower Bound	20.68	25.52	25.52	16.31	16.31	20.81	20.81		
Interval for Mean	Upper Bound	23.25	28.61	28.61	19.37	19.37	23.32	23.32		
5% Trimmed Mean		21.91		27.23		17.88		22.11		
Median		22.00		27.00		18.00		22.00		
Variance		12.232		17.729		17.340		11.662		
Std. Deviation		3.497		4.211		4.164		3.415		
Minimum		16		21		15		18		
Maximum		30		30		26		29		
Range		14		9		11		11		
Interquartile Range		6		3.0		3		2		
Skewness		.084	.421	761	.421	139	.421	166	.421	
Kurtosis		423	.821	1.747	.821	.178	.821	.370	.821	

Based on the analysis, the experimental group demonstrated significant improvement in learning outcomes. The mean score of the experimental class increased from 21.97 in the pretest to 27.06 in the posttest after the implementation of the time token learning model. In the control class, the mean score rose from 17.84 to 22.06 following the posttest. Although both groups showed an increase in scores, the improvement in the experimental class was notably greater than that observed in the control class.

Normality and Homogeneity Test. The subsequent stage involved conducting normality and homogeneity analyses to determine whether the pretest and posttest data for both the experimental and control groups met the assumption of normal distribution. These analyses were applied to all collected data from both groups. Data are considered normally distributed if the significance value (p) exceeds 0.05; conversely, a significance value below 0.05 indicates that the data are not normally distributed. The complete results of the normality test for each group are presented in the table below:

Table 5 Normality Test

		Shapiro-Wilk	
	Statistic	\mathbf{Df}^{-}	Sig.
Eksperimen_pretest	.969	31	.321
Eksperimen_posttest	.926	31	.208
Kontrol_pretest	.824	31	.333
Kontrol_postest	.887	31	.473

Referring to the Shapiro-Wilk test results listed in Table 3, several pieces of information were obtained regarding data distribution. For the experimental group, the significance value for the pretest was 0.321, and for the posttest, 0.208. Both values are above the 0.05 threshold, indicating that the data from both testing stages are normally distributed. The same was true for the control group, where the pretest showed a significance value of 0.333 and the posttest a value of 0.473. Therefore, all data analyzed in this study met the requirements for a normal distribution.

After ensuring data normality, a homogeneity analysis was conducted to evaluate whether the data from the experimental and control groups exhibited similar characteristics. Data are considered homogeneous if the significance value is greater than 0.05. Conversely, if the value is below 0.05, the data are categorized as non-homogeneous.

Table 6 Homogeneity Test

Tests of Homogeneity of Variances								
		Levene	df1	df2	Sig.			
		Statistic						
Postest	Based on Mean	1.197	1	60	.278			
	Based on Median	1.214	1	60	.275			
	Based on Median and with adjusted df	1.214	1	58.651	.275			
	Based on trimmed mean	1.231	1	60	.272			

Referring to the results presented in Table 6, the homogeneity test yielded a significance value of 0.278, which is greater than 0.05. This indicates that the data distributions in both the experimental and control groups are homogeneous, or in other words, exhibit comparable variance.

Hypothesis Testing. After met the assumptions of normality and homogeneity, the next stage of the analysis was hypothesis testing. An independent samples t-test was employed to examine whether there were significant differences in student learning outcomes between the experimental group, which received instruction through the time token model, and the control group, which was taught using conventional methods. The significance value obtained from the test served as the basis for hypothesis acceptance or rejection. Specifically, if the significance value is less than 0.05, the null hypothesis (H₀) is rejected and the alternative hypothesis (H_a) is accepted, indicating a statistically significant difference between the two groups. Conversely, if the significance value exceeds 0.05, H₀ is accepted and H_a is rejected, suggesting no significant difference between the experimental and control groups. This analysis was conducted to determine whether the time token model is more effective in improving students' speaking skills compared to conventional learning approaches. The complete results of the hypothesis testing are presented in the following table.

Table 7 Hypothesis Results

	Independent Samples Test									
			t-test for Equality of Means							
		Т	T Df Significance			Mean	Std. Error	95% C	onfidence	
						Difference	Difference	Interval Differen		
				One- Sided p	Two- Sided p			Lower	Upper	
Nilai	Equal variances assumed	5.135	62	<.001	<.001	5.000	.974	3.052	6.948	
	Equal variances not assumed	5.135	57.548	<.001	<.001	5.000	.974	3.051	6.949	

The results of the hypothesis test yielded a significance value of 0.001 (< 0.05), indicating that the null hypothesis (H_0) was rejected and the alternative hypothesis (H_a) was accepted. This finding demonstrates a statistically significant difference in speaking skills between students in the experimental and control groups. Specifically, the application of the time token model in the experimental group produced a significant positive effect on students' speaking skills compared to the conventional learning method implemented in the control group. These results provide empirical evidence that the time token model is an effective instructional strategy for enhancing speaking skills.

Discussion

These findings provide evidence that the implementation of the time token model in the learning process significantly contributed to improving students' speaking skills, compared to conventional learning methods. Students in the experimental group showed more significant progress after participating in the time token approach, as reflected in an increase in their average score from 21.97 in the pretest to 27.06 in the posttest, representing an average increase of 5.09 points. These results confirm that the use of the time token model has a positive impact on students' speaking skills.

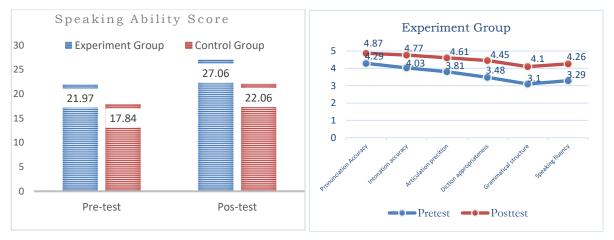


Figure 1 Speaking ability score

Figure 2 Speaking ability in Experiment Group

Furthermore, in relation to the six main aspects of speaking ability, the experimental class demonstrated significant improvement, progressing from good to excellent. In contrast, the control class also experienced improvement across all six aspects, but only from fair to good. These findings are consistent with prior studies. (Maharani et al., 2023) reported that the implementation of the Time Token learning model significantly enhanced speaking skills, with students in the experimental group showing consistent score increases following the intervention, which was attributed to greater active participation in classroom activities. Similarly, (Gaol et al., 2022) found that Time Tokens effectively provided equal opportunities for all students to engage in speaking activities, thereby reducing dominance by certain individuals and minimizing passive participation. In addition, (Rizka et al., 2021) highlighted that the model fosters students' confidence to speak, articulate ideas, and argue in a structured manner, further confirming its effectiveness in improving speaking ability.

The effectiveness of the Time Token model in improving speaking performance is evident in classroom practice. In this model, each student is allocated a set number of "speaking coupons," which must be used whenever they provide an answer or express an opinion. Once a student exhausts their coupons, they are no longer permitted to speak, ensuring equitable speaking opportunities and balanced participation. This mechanism not only promotes active engagement but also develops students' time management skills, quick thinking, and effective sentence construction. As a result, aspects such as intonation, articulation, and fluency improved from good to excellent, while diction and sentence structure advanced from fair to good. These outcomes are further supported by pre-experimental research conducted by (Nugraha, Nappu, & Mallappiang, 2023), which demonstrated that the Time Token model significantly enhanced students' fluency and pronunciation.

For instance, in an Indonesian language lesson on telling personal experiences, each student in the experimental group was allocated three speech tokens, each lasting 30 seconds. Students then took turns sharing their experiences according to the number of tokens they possessed. This approach successfully engaged all learners, created a lively classroom atmosphere,

and encouraged previously passive students to articulate their ideas. Such an implementation is consistent with the findings of (Muhijja, 2024), who emphasized that the Time Token model supports the development of language skills in real-life contexts while fostering students' confidence and communicative competence.

Observations during the study further indicated that students in the experimental group exhibited greater enthusiasm and participation compared to those in the control group. Despite the limited number of tokens available, students actively maximized their speaking opportunities. This outcome aligns with constructivist theory, which posits that effective learning occurs when learners actively construct knowledge through social interaction (Budyastuti & Fauziati, 2021). Through structured discussions and concise presentations, the Time Token model facilitates the development of critical thinking, logical reasoning, and communication skills.

These findings align with research (Paksi, 2022), which shows that time tokens can create a more democratic and participatory learning environment, where every student has an equal right to speak. Furthermore, the implementation of time tokens has been proven to address the problem of poor speaking skills caused by conventional, teacher-centered learning methods. Thus, the results of this study further confirm that time tokens are an effective learning model for improving elementary school students' speaking skills. The main advantage of this model lies in its system, which encourages equal participation, increases motivation, and builds students' confidence in expressing their opinions. However, its effectiveness is still influenced by the consistency of teacher implementation and a conducive classroom atmosphere, so teacher training is needed to optimally manage this strategy.

CONCLUSION

This study found that the implementation of the Time Token learning model significantly improved students' speaking skills compared to conventional methods. Students in the experimental group achieved higher post-test scores, indicating substantial progress in aspects such as fluency, articulation, and confidence. The model ensured equal speaking opportunities, which enhanced participation, time management, and structured expression. These findings confirm the positive impact of the Time Token approach on students' motivation and communicative competence.

This study contributes to the field of language pedagogy by reaffirming the effectiveness of the Time Token model in promoting an active, democratic, and participatory classroom environment. It extends prior research by providing contextual evidence from elementary education, particularly in Indonesian language learning. The findings highlight how structured speaking turns can encourage equal participation, enhance students' confidence, and foster critical and communicative thinking.

Despite the positive outcomes, the study's effectiveness was influenced by the teacher's consistency in applying the model and maintaining a conducive classroom atmosphere. The research was limited to a single school environment, which may constrain the generalizability of the findings. Future studies should involve larger samples, more diverse educational contexts, and longitudinal designs to further validate the long-term impact of the Time Token model on students' speaking performance and motivation.

ACKNOWLEDGMENT

This article is the result of a study conducted by the first author under the supervision of Riris Nurkholidah Rambe. The author also expresses gratitude to her guidance and to the Tarbiyah and Teaching, Department of Madrasah Ibtidaiyah, Universitas Islam Negeri Sumatera Utara for their support.

REFERENCES

- Abraham, I., & Supriyati, Y. (2022). Desain Kuasi Eksperimen Dalam Pendidikan: Literatur Review. *Jurnal Ilmiah Mandala Education*, 8(3), 2476–2482. https://doi.org/10.58258/jime.v8i3.3800
- Amelhay, A., & Sakale, S. (2024). Importance of listening and speaking in English language acquisition. *Journal of English Language Teaching and Applied Linguistics*, 6(3), 1–5. https://doi.org/10.32996/jeltal.2024.6.3.1
- Anistiara. (2021). Pengaruh model time token arends terhadap keterampilan berbicara siswa kelas v min 35 aceh besar. https://repository.ar-raniry.ac.id/id/eprint/29567/1/Anistiara, 160209036, FTK, PGMI.pdf
- Budiasningrum, R. S., & Rosita, R. (2022). Using podcasts to improve listening and speaking skills: Literature review. *JOLADU: Journal of Language Education*, 1(1), 13–20. https://doi.org/10.58738/joladu.v1i1.11
- Budyastuti, Y., & Fauziati, E. (2021). Penerapan Teori Konstruktivisme pada Pembelajaran Daring Interaktif. *Jurnal Papeda: Jurnal Publikasi Pendidikan Dasar*, 3(2), 112–119. https://doi.org/10.36232/jurnalpendidikandasar.v3i2.1126
- Devina, Elni Zahra. (2022). Analisis Kemampuan Siswa Dalam Keterampilan Berbicara Pada Pembelajaran Bahasa Indonesia (Studi Kasus Pada Siswa Kelas V Sdn 6 Jatimulyo). *Diploma THesis*, *UIN raden Intan*, *Lampung*.
- Devianty, R. (2025). Analisis Strategi Bermain Peran Terhadap Kemampuan Berbicara Siswa di Kelas XI Madrasah Aliyah Ponpes Tahfidz Al-Faiz Tembung pengembangan metode pembelajaran yang inovatif dan efektif dalam pendidikan Islam ,. 3. https://journal.aspirasi.or.id/index.php/Fonologi/article/view/1520
- Gaol, M. L., Ratnawati, R., Hanayani, F. (2022). Pengaruh Model Pembelajaran Kooperatif Tipe Time Token Terhadap Hasil Belajar Ipa Tema 8 Di Sekolah. *Jurnal IKA PGSD (Ikatan Alumni PGSD) UNARS*, 10(2), 277. https://doi.org/10.36841/pgsdunars.v10i2.1426
- Haidir, H. (2020). Pengembangan Model Pembelajaran Pendidikan Agama Islam Pada Madrasah di Daerah Islam Minoritas (Kabupaten Dairi, Karo, dan Tapteng). http://repository.uinsu.ac.id/13663/1/BOPTN.pdf
- Hasibuan, N. H., Rambe, R. N., Syaifullah, M., Jl, A., Iskandar, W., Estate, M., Percut, K., Tuan, S., Serdang, K. D., & Utara, S. (2024). Pengaruh Model Pembelajaran Role-Playing terhadap Keterampilan Berbicara Siswa Kelas IV MIN 4 Kota Medan. 2(6).
- Iswara, et al. (2024). Perkembangan emosi dan bahasa terhadap anak sekolah dasar. *Karimah Tauhid*, 3(6), e-ISSN 2963-590X. https://doi.org/10.30997/karimahtauhid.v3i6.13985
- Jończyk, R., Wrembel, M., & Durlik, J. (2024). Operating in a second language lowers cognitive interference. *NeuroImage*, 297, 120752. https://doi.org/10.1016/j.neuroimage.2024.120752
- Li, X., Ng, K. K., Wong, J. J. Y., Lee, J. W., Zhou, J. H., & Yow, W. Q. (2021). Bilingual language entropy influences executive functions through functional connectivity and signal variability. *Brain and Language*, 222, 105026. https://doi.org/10.1016/j.bandl.2021.105026
- Maharani, S., Syaflin, S. L., & Hermansah, B. (2023). Pengaruh Pengunaan Model Pembelajaran Time Token Terhadap Hasil Belajar Siswa. *JPDI (Jurnal Pendidikan Dasar Indonesia*), 8(1), 35. https://doi.org/10.26737/jpdi.v8i1.3757
- Muhijja, T. F. (2024). Pengaruh Penerapan Metode Time Token Terhadap Perkembangan Kemampuan Bahasa Reseptif Anak di TK IT Matla'ati. *Αγαη*, 15(1), 37–48.
- Nugraha, D. E., Nappu, S., & Mallappiang, Y. (2023). The Use of Time Token Method on Students Speaking Ability. *English Language Teaching Methodology*, 3(1), 98–110. https://doi.org/10.56983/eltm.v3i1.224
- Paksi, G. R. (2022). Time Token Arends: Sebuah Strategi Meningkatkan Keaktifan dan Hasil Belajar Siswa di Kelas. *Edu Cendikia: Jurnal Ilmiah Kependidikan*, 2(2), 345–352.

- https://doi.org/10.55784/jupenji.vol1.iss1.80
- Rambe, R. N, Syahfitri, A., Humayroh, A., Alfina, N., Azkia, P., & Rianti, T.D. (2023). Upaya Meningkatkan Keterampilan Berbicara Di Depan Umum. *Jurnal Pendidikan Dan Sastra Inggris*, 3(2), 11–24. https://doi.org/10.55606/jupensi.v3i2.1966.
- Rizka, W., Budianti, Y., & Kusumawati, T. I. (2021). Implementasi Model Pembelajaran Kooperatif Tipe Tito (Time Token) Terhadap Keterampilan Berbicara Siswa Pada Mata Pelajaran Bahasa Indonesia Di Kelas Iii-a Sdn 25 Bilah Hilir Tahun Ajaran 2021/2022. *Nizhamiyah*, 11(2), 54–65. https://doi.org/10.30821/niz.v11i2.1284
- Rosliani, R. (2023). Media Pembelajaran Bahasa Indonesia Bagi Penutur Asing. *Jurnal Ilmiah Aquinas*, 2, 91–95. https://doi.org/10.54367/aquinas.v6i2.2435
- Saputri, Z. H., & Firmansyah, M. B. (2023). Pengembangan Media Pembelajaran Komik Untuk Keterampilan Berbicara. *Jurnal Tinta*, 5(1), 1–11.
- Simbolon, J. (2023). Transformasi Pembelajaran Bahasa Indonesia melalui Penerapan Literasi di Sekolah. *JBSI: Jurnal Bahasa Dan Sastra Indonesia*, 3(01), 162–171. https://doi.org/10.47709/jbsi.v3i01.2941
- Sugiyono (2018). Metode Penelitian Kuantitatif. Bandung: Alfabeta
- Suriani, A., Chandra, C., Sukma, E., & Habibi, H. (2021). Pengaruh Penggunaan Podcast dan Motivasi Belajar terhadap Keterampilan Berbicara pada Siswa di Sekolah Dasar. *Jurnal Basicedu*, 5(2), 800–807. https://doi.org/10.31004/basicedu.v5i2.832
- Susanti, S., Aminah, F., Mumtazah Assa'idah, I., Wati Aulia, M., & Angelika, T. (2024). Dampak Negatif Metode Pengajaran Monoton Terhadap Motivasi Belajar Siswa. *Pedagogik: Jurnal Pendidikan Dan Riset*, 2(2), 86–93. https://ejournal.edutechjaya.com/index.php/pedagogik/article/view/529
- Yusnaldi, E., Wibowo, S. P., Azzahra, S., Sitorus, P. A., Hutasuhut, N. A., & Nadya, L. (2023). Strategi Guru dalam Meningkatkan Keterampilan Berpikir Kritis Siswa dalam Pembelajaran IPS di SD/MI. *Jurnal Pendidikan Tambusai*, 7(3), 32160–32166.
- Yusron, M., Ika Puspita, A. M., & Puspitaningsih, F. (2020). Pengaruh Media Pop Up Book Berbasis Literasi Digital Untuk Meningkatkan Keterampilan Berbicara Siswa Kelas Rendah. *MADROSATUNA: Jurnal Pendidikan Guru Madrasah Ibtidaiyah*, *3*(1), 39–45. https://doi.org/10.47971/mjpgmi.v3i1.208
- Wabdaron, D. Y., & Reba, Y. A. (2020). Peningkatan Keterampilan Berbicara Melalui Metode Pembelajaran Berbasis Masalah Siswa Sekolah Dasar Manokwari Papua Barat. *Jurnal Papeda: Jurnal Publikasi Pendidikan Dasar*, 2(1), 27–36. https://e-journal.unimudasorong.ac.id/index.php/jurnalpendidikandasar/article/view/1743